4,894 research outputs found

    Integrated Sachs-Wolfe map recovery from NVSS and WMAP 7yr data

    Get PDF
    We present a map of the Cosmic Microwave Background (CMB) anisotropies induced by the late Integrated Sachs Wolfe effect. The map is constructed by combining the information of the WMAP 7-yr CMB data and the NRAO VLA Sky Survey (NVSS) through a linear filter. This combination improves the quality of the map that would be obtained using information only from the Large Scale Structure data. In order to apply the filter, a given cosmological model needs to be assumed. In particular, we consider the standard LCDM model. As a test of consistency, we show that the reconstructed map is in agreemet with the assumed model, which is also favoured against a scenario where no correlation between the CMB and NVSS catalogue is considered.Comment: 6 pages, 4 figures. Minor revision, accepted for publication in MNRA

    NCBO Ontology Recommender 2.0: An Enhanced Approach for Biomedical Ontology Recommendation

    Get PDF
    Biomedical researchers use ontologies to annotate their data with ontology terms, enabling better data integration and interoperability. However, the number, variety and complexity of current biomedical ontologies make it cumbersome for researchers to determine which ones to reuse for their specific needs. To overcome this problem, in 2010 the National Center for Biomedical Ontology (NCBO) released the Ontology Recommender, which is a service that receives a biomedical text corpus or a list of keywords and suggests ontologies appropriate for referencing the indicated terms. We developed a new version of the NCBO Ontology Recommender. Called Ontology Recommender 2.0, it uses a new recommendation approach that evaluates the relevance of an ontology to biomedical text data according to four criteria: (1) the extent to which the ontology covers the input data; (2) the acceptance of the ontology in the biomedical community; (3) the level of detail of the ontology classes that cover the input data; and (4) the specialization of the ontology to the domain of the input data. Our evaluation shows that the enhanced recommender provides higher quality suggestions than the original approach, providing better coverage of the input data, more detailed information about their concepts, increased specialization for the domain of the input data, and greater acceptance and use in the community. In addition, it provides users with more explanatory information, along with suggestions of not only individual ontologies but also groups of ontologies. It also can be customized to fit the needs of different scenarios. Ontology Recommender 2.0 combines the strengths of its predecessor with a range of adjustments and new features that improve its reliability and usefulness. Ontology Recommender 2.0 recommends over 500 biomedical ontologies from the NCBO BioPortal platform, where it is openly available.Comment: 29 pages, 8 figures, 11 table

    Ratchet universality in the bidirectional escape from a symmetric potential well

    Get PDF
    The present work discusses symmetry-breaking-induced bidirectional escape from a symmetric metastable potential well by the application of zero-average periodic forces in the presence of dissipation. We characterized the interplay between heteroclinic instabilities leading to chaotic escape and breaking of a generalized parity symmetry leading to directed ratchet escape to an attractor either at infinity or at -infinity. Optimal enhancement of directed ratchet escape is found to occur when the wave form of the zero-average periodic force acting on the damped driven oscillator matches as closely as possible to a universal wave form, as predicted by the theory of ratchet universality. Specifically, the optimal approximation to the universal force triggers the almost complete destruction of the nonescaping basin for driving amplitudes which are systematically lower than those corresponding to a symmetric periodic force having the same period. We expect that this work could be potentially useful in the control of elementary dynamic processes characterized by multidirectional escape from a potential well, such as forced chaotic scattering and laser-induced dissociation of molecular systems, among others

    Hot-melt extrusion (HME) formulations of Albendazole for increasing dissolution properties

    Get PDF
    Hot-Melt-Extrusion (HME) is a flexible process that uses high temperature and pressure conditions to pump raw materials such as an Active Pharmaceutical Ingredient (API) and a pharmaceutical grade polymer through a barrel. The material is conveyed and mixed using intermeshing co-rotating twin-screws and then pushed through a die to form a well-shaped strand. Due to the high mixing degree provided by the twin-screws, the drug is transformed from crystalline to amorphous form. The use of twin-screw extruders is currently being implemented within continuous manufacturing platforms (Crowley, 2007)
    corecore